Numerical method for a system of second order singularly perturbed turning point problems
نویسندگان
چکیده مقاله:
In this paper, a parameter uniform numerical method based on Shishkin mesh is suggested to solve a system of second order singularly perturbed differential equations with a turning point exhibiting boundary layers. It is assumed that both equations have a turning point at the same point. An appropriate piecewise uniform mesh is considered and a classical finite difference scheme is applied on this mesh. An error estimate is derived by using supremum norm which is $O(N^{-1}(ln N)^2)$. Numerical examples are given to validate theoretical results.
منابع مشابه
numerical method for a system of second order singularly perturbed turning point problems
in this paper, a parameter uniform numerical method based on shishkin mesh is suggested to solve a system of second order singularly perturbed differential equations with a turning point exhibiting boundary layers. it is assumed that both equations have a turning point at the same point. an appropriate piecewise uniform mesh is considered and a classical finite difference scheme is applied on t...
متن کاملAn efficient numerical method for singularly perturbed second order ordinary differential equation
In this paper an exponentially fitted finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer. A fitting factor is introduced and the model equation is discretized by a finite difference scheme on an uniform mesh. Thomas algorithm is used to solve the tri-diagonal system. The stability of the algorithm is investigated. It ...
متن کاملFitted mesh numerical method for singularly perturbed delay differential turning point problems exhibiting boundary layers
Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opin...
متن کاملNumerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type
In this paper, we have proposed a numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided in...
متن کاملan efficient numerical method for singularly perturbed second order ordinary differential equation
in this paper an exponentially fitted finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer. a fitting factor is introduced and the model equation is discretized by a finite difference scheme on an uniform mesh. thomas algorithm is used to solve the tri-diagonal system. the stability of the algorithm is investigated. it ...
متن کاملOn the Numerical Solution for Singularly Perturbed Second-order ODEs
In this article we consider the approximation of singularly perturbed boundary value problems using a local adaptive grid h-refinement for finite element method, the variation iteration method and the homotopy perturbation method. The solution to such problems contains boundary layers which overlap and interact and the numerical approximation must take this into account in order for the resulti...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 4 شماره 2
صفحات 211- 232
تاریخ انتشار 2016-11-25
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023